Matrices

 

Matrices                           practice sums 👈


A matrix is a rectangular array of numbers arranged in rows and columns.

Example:

A=[1234]A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}
  • It has 2 rows and 2 columns → a 2×2 matrix


2. Order of a Matrix

The order of a matrix is written as m × n, where:

  • m = number of rows

  • n = number of columns

Example:

[567]\begin{bmatrix} 5 & 6 & 7 \end{bmatrix}

is a 1×3 matrix


3. Types of Matrices

TypeExampleDescription
Row Matrix[123][1 \quad 2 \quad 3]
Only 1 row
Column Matrix[456]\begin{bmatrix} 4 \\ 5 \\ 6 \end{bmatrix}Only 1 column
Square Matrix[2345]\begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}Rows = Columns
Zero Matrix[0000]All elements are 0
Diagonal Matrix[5009]\begin{bmatrix} 5 & 0 \\ 0 & 9 \end{bmatrix}
Non-zero only on the diagonal
Identity Matrix[1001]\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}
Diagonal = 1, others = 0

4. Matrix Notation

  • Matrix is denoted by capital letters: A, B, C...

  • Elements by aij where i    is row number,j     is column number


5. Matrix Operations

Addition

  • Add corresponding elements

A+B=[1234]+[5678]=[681012]A + B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} + \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 6 & 8 \\ 10 & 12 \end{bmatrix}

(Only possible if order is same)

Subtraction

Same as addition, just subtract elements.

Scalar Multiplication

Multiply each element by the number (scalar).

3×[2104]=[63012]3 \times \begin{bmatrix} 2 & -1 \\ 0 & 4 \end{bmatrix} = \begin{bmatrix} 6 & -3 \\ 0 & 12 \end{bmatrix}

Matrix Multiplication

A=[abcd],B=[efgh]A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, B = \begin{bmatrix} e & f \\ g & h \end{bmatrix}
AB=[ae+bgaf+bhce+dgcf+dh]AB = \begin{bmatrix} ae+bg & af+bh \\ ce+dg & cf+dh \end{bmatrix}

(Only possible if: number of columns in A = number of rows in B)

No comments:

Post a Comment

  "Dear children, Never be afraid of mathematics — it's like a puzzle waiting for your smart mind to solve it! Remember, your pare...