Quadratic Equation

 Quadratic Equation       "practice sums"👈

Definition

A quadratic equation is a polynomial equation of degree 2, which can be written in the standard form:

ax2+bx+c=0where a0ax^2 + bx + c = 0 \quad \text{where } a \ne 0

Here:

  • a,b,ca, b, c are real numbers

  • xx is the variable

  • aa is the coefficient of x2x^2


🔹 Methods to Solve Quadratic Equations

1. Factorisation Method

  • Split the middle term into two parts that multiply to give aca \cdot c and add to give bb

  • Solve by setting each factor to zero

Example:

x2+5x+6=0(x+2)(x+3)=0x=2,3x^2 + 5x + 6 = 0 \Rightarrow (x + 2)(x + 3) = 0 \Rightarrow x = -2, -3

2. Quadratic Formula

If the equation is not easily factorisable:

x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}

Use when:

  • Factorisation is not simple

  • Discriminant method is required


🔹 Discriminant (D)

D=b24acD = b^2 - 4ac

It helps determine the nature of roots:

Discriminant (D)Nature of Roots
D>0D > 0
Real and unequal
D=0D = 0
Real and equal
D<0D < 0
Imaginary/Complex roots

🔹 Nature of Roots Shortcut

If D is:

  • Positive & a perfect square → Rational roots

  • Positive & not a perfect square → Irrational roots

  • Negative → No real solution


Example Using Quadratic Formula

Solve:

2x2+3x5=02x^2 + 3x - 5 = 0

Here: a=2,b=3,c=5a = 2, b = 3, c = -5

D=b24ac=9+40=49D = b^2 - 4ac = 9 + 40 = 49
x=3±4922=3±74x=1,2.5x = \frac{-3 \pm \sqrt{49}}{2 \cdot 2} = \frac{-3 \pm 7}{4} \Rightarrow x = 1, -2.5

No comments:

Post a Comment

  "Dear children, Never be afraid of mathematics — it's like a puzzle waiting for your smart mind to solve it! Remember, your pare...