section formula

 

. Section Formula (Internal Division)                      practice sums👈

  • Used to find coordinates of a point dividing a line segment between two points in a given ratio.

  • Let A(x1,y1)A(x_1, y_1)and B(x2,y2)B(x_2, y_2) be two points.
    A point P(x,y)P(x, y) divides ABABin the ratio m:nm : n.

  • 🔸 Formula:

P(x,y)=(mx2+nx1m+n, my2+ny1m+n)P(x, y) = \left( \frac{mx_2 + nx_1}{m + n},\ \frac{my_2 + ny_1}{m + n} \right)

🔹 2. Midpoint Formula

  • A special case of section formula when the ratio is 1:1 (i.e., the point divides the line segment in the middle).

  • 🔸 Formula:

Midpoint=(x1+x22, y1+y22)\text{Midpoint} = \left( \frac{x_1 + x_2}{2},\ \frac{y_1 + y_2}{2} \right)

🔹 3. Centroid of a Triangle

  • The centroid is the point of intersection of the medians of a triangle.

  • If the vertices of the triangle are:
    A(x1,y1), B(x2,y2), C(x3,y3)A(x_1, y_1),\ B(x_2, y_2),\ C(x_3, y_3)

  • 🔸 Formula:

Centroid G=(x1+x2+x33, y1+y2+y33)\text{Centroid } G = \left( \frac{x_1 + x_2 + x_3}{3},\ \frac{y_1 + y_2 + y_3}{3} \right)

No comments:

Post a Comment

  "Dear children, Never be afraid of mathematics — it's like a puzzle waiting for your smart mind to solve it! Remember, your pare...